计算机字符编码


一、字符编码

首先来看一下常用的编码有哪些,截图自Notepad++。

其中ANSI在中国大陆即为GBK(以前是GB2312),最常用的是 GBK 和 UTF8无BOM 编码格式。后面三个都是有BOM头的文本格式,UCS-2即为人们常说的Unicode编码,又分为大端、小端。

所谓BOM头(Byte Order Mark)就是文本文件中开始的几个并不表示任何字符的字节,用二进制编辑器(如bz.exe)就能看到了。

UTF8的BOM头为 0xEF 0xBB 0xBF

Unicode大端模式为 0xFE 0xFF

Unicode小端模式为 0xFF 0xFE

  如图:  

  

二、ASCII码

  计算机一开始发明的时候是用来解决数字计算的问题,后来人们发现,计算机还可以做更多的事,例如文本处理。但由于计算机只识“数”,因此人们必须告诉计算机哪个数字来代表哪个特定字符,例如65代表字母‘A’,66代表字母‘B’,以此类推。但是计算机之间字符-数字的对应关系必须得一致,否则就会造成同一段数字在不同计算机上显示出来的字符不一样。因此美国国家标准协会ANSI制定了一个标准,规定了常用字符的集合以及每个字符对应的编号,这就是ASCII字符集(Character Set),也称ASCII码。

  那时候的字符编解码系统非常简单,就是简单的查表过程。例如将字符序列编码为二进制流写入存储设备,只需要在ASCII字符集中依次找到字符对应的字节,然后直接将该字节写入存储设备即可。解码二进制流的过程也是类似。

  其中:

0~31及127(共33个)是控制字符或通信专用字符(其余为可显示字符),如控制符:LF(换行)、CR(回车)、FF(换页)、DEL(删除)、BS(退格)

32~126(共95个)是字符(32是空格),其中48~57为0到9十个阿拉伯数字。

65~90为26个大写英文字母,97~122号为26个小写英文字母,其余为一些标点符号、运算符号等。

后128个称为扩展ASCII码。许多基于x86的系统都支持使用扩展(或“高”)ASCII。扩展ASCII 码允许将每个字符的第8 位用于确定附加的128 个特殊符号字符、外来语字母和图形符号。

三、OEM字符集的衍生

  当计算机开始发展起来的时候,人们逐渐发现,ASCII字符集里那可怜的128个字符已经不能再满足他们的需求了。人们就在想,一个字节能够表示的数字(编号)有256个,而ASCII字符只用到了0x00~0x7F,也就是占用了前128个,后面128个数字不用白不用,因此很多人打起了后面这128个数字的主意。可是问题在于,很多人同时有这样的想法,但是大家对于0x80-0xFF这后面的128个数字分别对应什么样的字符,却有各自的想法。这就导致了当时销往世界各地的机器上出现了大量各式各样的OEM字符集。

  大家对于0x00~0x7F这个范围的解释基本是相同的,而对于后半部分0x80~0xFF的解释却不一定相同。甚至有时候同样的字符在不同OEM字符集中对应的字节也是不同的。

  不同的OEM字符集导致人们无法跨机器交流各种文档。例如职员甲发了一封简历résumés给职员乙,结果职员乙看到的却是r?sum?s,因为é字符在职员甲机器上的OEM字符集中对应的字节是0x82,而在职员乙的机器上,由于使用的OEM字符集不同,对0x82字节解码后得到的字符却是?。

四、多字节字符集(MBCS)和中文字符集

  上面我们提到的字符集都是基于单字节编码,也就是说,一个字节翻译成一个字符。这对于拉丁语系国家来说可能没有什么问题,因为他们通过扩展第8个比特,就可以得到256个字符了,足够用了。但是对于亚洲国家来说,256个字符是远远不够用的。因此这些国家的人为了用上电脑,又要保持和ASCII字符集的兼容,就发明了多字节编码方式,相应的字符集就称为多字节字符集(Muilti-Bytes Charecter Set)。例如中国使用的就是双字节字符集编码。

  例如目前最常用的中文字符集GB2312,涵盖了所有简体字符以及一部分其他字符;GBK(K代表扩展的意思)则在GB2312的基础上加入了对繁体字符等其他非简体字符。这两个字符集的字符都是使用1-2个字节来表示。Windows系统采用936代码页来实现对GBK字符集的编解码。在解析字节流的时候,如果遇到字节的最高位是0的话,那么就使用936代码页中的第1张码表进行解码,这就和单字节字符集的编解码方式一致了。如果遇到字节的最高位是1的话,那么就表示需要两个字节值才能对应一个字符。

   假如你使用GB2312写了这么一句话:

  我叫ABC

它的二进制编码是这样的:

11001110 11010010 10111101 11010000 01000001 01000002 01000003

全角?

全角是一种电脑字符,且每个全角字符占用两个标准字符(或半角字符)位置。通常的英文字母、数字键、符号键都是半角的,半角的显示内码都是一个字节。为了排列整齐,英文和其它拉丁文的字符和标点也提供了全角格式。在中文输入法中,切换全角和半角格式的快捷键为SHIFT+空格。

五、ANSI标准、国家标准、ISO标准

  不同ASCII衍生字符集的出现,让文档交流变得非常困难,因此各种组织都陆续进行了标准化流程。例如美国ANSI组织制定了ANSI标准字符编码(注意,我们现在通常说到ANSI编码,通常指的是平台的默认编码,例如英文操作系统中是ISO-8859-1,中文系统是GBK),ISO组织制定的各种ISO标准字符编码,还有各国也会制定一些国家标准字符集,例如中国的GBK,GB2312和GB18030。

  操作系统在发布的时候,通常会往机器里预装这些标准的字符集还有平台专用的字符集,这样只要你的文档是使用标准字符集编写的,通用性就比较高了。例如你用GB2312字符集编写的文档,在中国大陆内的任何机器上都能正确显示。同时,我们也可以在一台机器上阅读多个国家不同语言的文档了,前提是本机必须安装该文档使用的字符集。

六、Unicode 的出现

  虽然通过使用不同字符集,我们可以在一台机器上查阅不同语言的文档,但是我们仍然无法解决一个问题:如果一份文档中含有不同国家的不同语言的字符,那么无法在一份文档中显示所有字符。为了解决这个问题,我们需要一个全人类达成共识的巨大的字符集,这就是Unicode字符集。

  Unicode字符集涵盖了目前人类使用的所有字符,并为每个字符进行统一编号,分配唯一的字符码(Code Point)。Unicode字符集将所有字符按照使用上的频繁度划分为17个层面(Plane),每个层面上有216=65536个字符码空间。

  其中第0个层面BMP,基本涵盖了当今世界用到的所有字符。其他的层面要么是用来表示一些远古时期的文字,要么是留作扩展。我们平常用到的Unicode字符,一般都是位于BMP层面上的。目前Unicode字符集中尚有大量字符空间未使用。

七、编码系统的变化

  在Unicode出现之前,所有的字符集都是和具体编码方案绑定在一起的(即字符集≈编码方式),都是直接将字符和最终字节流绑定死了,例如ASCII编码系统规定使用7比特来编码ASCII字符集;GB2312以及GBK字符集,限定了使用最多2个字节来编码所有字符,并且规定了字节序。这样的编码系统通常用简单的查表,也就是通过代码页就可以直接将字符映射为存储设备上的字节流了。例如下面这个例子:

  Unicode同样也不完美,这里就有三个的问题,一个是,我们已经知道,英文字母只用一个字节表示就够了,第二个问题是如何才能区别Unicode和ASCII?计算机怎么知道两个字节表示一个符号,而不是分别表示两个符号呢?第三个,如果和GBK等双字节编码方式一样,用最高位是1或0表示两个字节和一个字节,就少了很多值无法用于表示字符,不够表示所有字符。Unicode在很长一段时间内无法推广,直到互联网的出现,为解决Unicode如何在网络上传输的问题,于是面向传输的众多 UTF(UCS Transfer Format)标准出现了,顾名思义,UTF-8就是每次8个位传输数据,而UTF-16就是每次16个位。UTF-8就是在互联网上使用最广的一种Unicode的实现方式,这是为传输而设计的编码,并使编码无国界,这样就可以显示全世界上所有文化的字符了。

UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号。从unicode到uft-8并不是直接的对应,而是要过一些算法和规则来转换(即Uncidoe字符集≠UTF-8编码方式)。

Unicode符号范围 | UTF-8编码方式

因此,Unicode只是定义了一个庞大的、全球通用的字符集,并为每个字符规定了唯一确定的编号,具体存储成什么样的字节流,取决于字符编码方案。推荐的Unicode编码是UTF-16和UTF-8。

早期字符编码、字符集和代码页等概念都是表达同一个意思。例如GB2312字符集、GB2312编码,936代码页,实际上说的是同个东西。

但是对于Unicode则不同,Unicode字符集只是定义了字符的集合和唯一编号,Unicode编码,则是对UTF-8、UCS-2/UTF-16等具体编码方案的统称而已,并不是具体的编码方案。所以当需要用到字符编码的时候,你可以写gb2312,codepage936,utf-8,utf-16,但请不要写Unicode。

造成乱码的原因就是因为使用了错误的字符编码去解码字节流,因此当我们在思考任何跟文本显示有关的问题时,请时刻保持清醒:当前使用的字符编码是什么。只有这样,我们才能正确分析和处理乱码问题。

常见CharSet有:GBK、GB2312、US-ASCII、ISO-8859-1、UTF-8、UTF-16BE、UTF-16LE、UTF-16

八、各种字符编码

  1、ASCII

  这套编码规则是由美国定制,一共规定了128个字符的编码,比如空格"SPACE"是32(十进制)(二进制00100000),大写的字母A是65(二进制01000001)。这128个符号(包括 32个不能打印出来的控制符号),只占用了一个字节(8 bit)的后面7位,最前面的1位统一规定为0。总共才有128个字符编码,一个字节都没有用完,这好像似乎有点太少了。于是乎,就开始压榨最高位,对其为1时也进行编码,利用最高位进行编码的方式就称为非ASCII编码,如ISO-8859-1编码。

  2、ISO-8859-1

  这套编码规则由ISO组织制定。是在 ASCII 码基础上又制定了一些标准用来扩展ASCII编码,即 00000000(0) ~ 01111111(127) 与ASCII的编码一样,对 10000000(128) ~ 11111111(255)这一段进行了编码,如将字符§编码成 10100111(167)。ISO-8859-1编码也是单字节编码,最多能够表示256个字符。Latin1是ISO-8859-1的别名,有些环境下写作Latin-1。但是,即使能够表示256个字符,对中文而言,还是太少了,一个字节肯定不够,必须用多个字节表示。但是,由于是单字节编码,和计算机最基础的表示单位一致,所以很多时候,仍旧使用 ISO8859-1编码来表示。而且在很多协议上,默认使用该编码。比如,虽然"中文"两个字不存在ISO8859-1编码,以GB2312编码为例,应该是D6D0 CEC4两个字符,使用ISO8859-1编码的时候则将它拆开为4个字节来表示:D6D0 CEC4(事实上,在进行存储的时候,也是以字节为单位进行处理)。而如果是UTF编码,则是6个字节e4 b8 ad e6 96 87。很明显,这种表示方法还需要以另一种编码为基础才能正确显示。而常见的中文编码方式有GB2312、BIG5、GBK。

  3、GB2312

GB2312其对所收录字符进行了"分区"处理,共94个区,区从1(十进制)开始,一直到94(十进制),每区含有94个位,位从1(十进制)开始,一直到94(十进制),共8836(94 * 94)个码位,这种表示方式也称为区位码,GB2312是双字节编码,其中高字节表示区,低字节表示位。各区具体说明如下:

01-09区收录除汉字外的682个字符,有164个空位(9 * 94 - 682)。
10-15区为空白区,没有使用。
16-55区收录3755个一级汉字(简体),按拼音排序。
56-87区收录3008个二级汉字(简体),按部首/笔画排序。
88-94区为空白区,没有使用。

  那么根据区位码如何算出GBK2312编码呢?区位码的表示范围为0101 - 9494(包含了空的区位码)。点击这里,查看中GB2312编码区位码。之后只需要按照如下规则进行转化即可。

  1. 将区(十进制)转化为十六进制。

  2. 将转化的十六进制加上A0,得到GB2312编码的高字节。

  3. 将位(十进制)转化为十六进制。

  4. 将转化的十六进制加上A0,得到GB2312编码的低字节。

  5. 组合区和位,区在高字节,位在低字节。

  6. 得到GB2312编码。

  流程图如下:

   

  例如:'李'字的区位码为3278(表示在32区,78位)。1. 将32(区)转化为十六进制为20。2. 加上A0为C0。3. 将78(位)转化为十六进制为4E。4. 加上A0为EE。5. 组合区和位,为C0EE。6. 得到GB2312编码,即'李'字的GB2312编码为C0EE。

  GB2312用两个字节编码,采用分区编码,总共编码的中文个数为6763(3755 + 3008)。这些汉字只是最常用的汉字,已经覆盖中国大陆99.75%的使用频率。但是,还有一些汉字在GB2312中没有被编码,如'镕'字,在GB2312中就没有被编码,这样就导致了问题,随之就出现了主流的GBK编码。在讲解GBK编码之前,我们另外讲解一下BIG5编码。

  4、BIG5

  BIG5采用双字节编码,使用两个字节来表示一个字符。高位字节使用了0x81-0xFE,低位字节使用了0x40-0x7E,及0xA1-0xFE。该编码是繁体中文字符集编码标准,共收录13060个中文字,其中有二字为重复编码,即“兀、兀”(A461及C94A)和“嗀、嗀”(DCD1及DDFC)。具体的分区如下:

8140-A0FE 保留给使用者自定义字符(造字区)
A140-A3BF 标点符号、希腊字母及特殊符号。其中在A259-A261,收录了度量衡单位用字:兙兛兞兝兡兣嗧瓩糎。
A3C0-A3FE 保留。此区没有开放作造字区用。
A440-C67E 常用汉字,先按笔划再按部首排序。
C6A1-F9DC 其它汉字。
F9DD-F9FE 制表符。

  注意:BIG5 编码与GBK编码没有什么关系。

  5、GBK

  GBK编码扩展了GB2312,完全兼容GB2312编码(如'李'字的GBK、GB2312编码均为C0EE),但其不兼容BIG5编码('長'字的BIG5编码为AAF8,GBK编码为E94C,'李'字的BIG5编码为A7F5 不等于C0EE),即如果使用GB2312编码,使用GBK解码是完全正常的,但是如果使用BIG5编码,使用GBK解码,会出现乱码。相比于GB2312编码,GBK编码了更多汉字,如'镕'字。GBK编码依然采用双字节编码方案,其编码范围:8140-FEFE,剔除xx7F码位,共23940个码位。能表示 21003 个汉字。点击这里,查看GBK编码。点击这里,可以查询中文的其他编码。在GBK之后又出现了GB18030编码,但是没有形成主流,故不做介绍,至此,中文编码的问题已经讲解完成。那么问题又来了,大陆网民与在海峡两岸网民交流时,若都使用GBK编码,则没有问题,若一方使用GBK编码,一方使用BIG5编码,那么就会出现乱码问题,这是在海峡两岸网民交流,如果漂洋过海进行交流呢?那就更容易出现乱码问题,这时候我们可能想,要是有一套全世界都通用的编码就好了,不要担心,这样的编码确实是存在的,那就是Unicode。

  6、Unicode

有两个独立的, 创立单一字符集的尝试. 一个是国际标准化组织(ISO)的 ISO 10646 项目, 另一个是由多语言软件制造商组成的协会组织的 Unicode 项目. 在1991年前后, 两个项目的参与者都认识到, 世界不需要两个不同的单一字符集. 它们合并双方的工作成果, 并为创立一个单一编码表而协同工作. 两个项目仍都存在并独立地公布各自的标准, 但 Unicode 协会和 ISO/IEC JTC1/SC2 都同意保持 Unicode 和 ISO 10646 标准的码表兼容, 并紧密地共同调整任何未来的扩展。

Unicode是指一张表,里面包含了可能出现的所有字符,每个字符对应一个数字,这个数字称为码点(Code Point),如字符'H'的码点为72(十进制),字符'李'的码点为26446(十进制)。Unicode表包含了1114112个码点,即从000000(十六进制) - 10FFFF(十六进制)。地球上所有字符都可以在Unicode表中找到对应的唯一码点。点击这里,查询字符对应的码点。Unicode将码空间划分为17个平面,从00 - 10(十六进制,最高两位),即从0 - 16(十进制),每个平面有65536个码点(2^16),其中最重要的是第一个Unicode平面(码位从0000 - FFFF),包含了最常用的字符,该平面被称为基本多语言平面(Basic Multilingual Plane),缩写为BMP,其他平面称为辅助平面(Supplementary Planes),在基本多文种平面內, 从D800到DFFF之间的码位区段是永久保留不映射到字符的, 因此UTF-16编码巧妙的利用了这保留下来的码位来对辅助平面内的字符进行编码,这点后面进行讲解。Unicode只是一个符号集,只规定的字符所对应的码点,并没有指定如何存储,如何进行存储出现了不同的编码方案,关于Unicode编码方案主要有两条主线:UCS和UTF。UTF主线由Unicode Consortium进行维护管理,UCS主线由ISO/IEC进行维护管理。

  7、UCS

   UCS全称为"Universal Character Set",在UCS中主要有UCS-2和UCS-4。

  (1)UCS-2

    UCS-2是定长字节的,固定使用2个字节进行编码,从0000(十六进制)- FFFF(十六进制)的码位范围,对应第一个Unicode平面。采用BOM(Byte Order Mark)机制,该机制作用如下:1. 确定字节流采用的是大端序还是小端序。2. 确定字节流的Unicode编码方案。

  (2)UCS-4

    UCS-4是定长字节的,固定使用4个字节进行编码。也采用了BOM机制。

  8、UTF

    UTF全称为"Unicode Transformation Format",在UTF中主要有UTF-8,UTF-16和UTF-32。

  (1)UTF-8

UTF-8是一种变长编码方式,使用1-4个字节进行编码。UTF-8完全兼容ASCII,对于ASCII中的字符,UTF-8采用的编码值跟ASCII完全一致。UTF-8是Unicode一种具体的编码实现。UTF-8是在互联网上使用最广的一种Unicode的编码规则,因为这种编码有利于节约网络流量(因为变长编码,而非统一长度编码)。关于Unicode码点如何转化为UTF-8编码,可以参照如下规则:

  ① 对于单字节的符号,字节的第一位设为0,后面7位为这个符号的unicode码。因此对于英语字母,UTF-8编码和ASCII码是相同的。

  ② 对于n字节的符号(n>1),第一个字节的前n位都设为1,第n+1位设为0,后面字节的前两位一律设为10。剩下的没有提及的二进制位,全部为这个符号的unicode码。

  总结的编码规则如下:

  

  Unicode符号范围                   |   UTF-8编码方式
         (十六进制) (十进制)            |   (二进制)
  ----------------------------------------------------------------------------------------------------
    0000 0000-0000 007F (0-127)           |    0xxxxxxx
    0000 0080-0000 07FF (128-2047)        |    110xxxxx 10xxxxxx
    0000 0800-0000 FFFF (2048-65535)      |     1110xxxx 10xxxxxx 10xxxxxx
    0001 0000-0010 FFFF (65536-1114111)   |    11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

  说明:字符'A'的Unicode码点为65(十进制),根据上表,在第一行范围,则字符'A'的UTF-8编码为01000001,中文字符'李'的Unicode码点为26446(十进制),二进制为01100111 01001110,十六进制为674E。根据上表,在第三行范围,则将'李'二进制代码从低位到高位依次填入x中,不足的填入0。得到UTF-8编码为11100110 10011101 10001110,即E69D8E(十六进制)。

由上述编码规则可知,0000 0000 - 0000 FFFF(第一行到第三行)为Unicode第一个平面(基本多语言平面),而0001 0000 - 10 FFFF(第四行)为Unicode其他平面(辅助平面)。在基本多语言平面对应了绝大多数常用的字符。对于大于65535(十进制)的码点,即在辅助平面上的码点,需要使用4个字节来进行UTF-8编码。

  (2)UTF-16

  UTF-8是不定长的编码,使用1、2、3、4个字节编码,而UTF-16则只使用2或4个字节编码。UTF-16也是Unicode一种具体的编码实现。关于Unicode如何转化为UTf-16编码规则如下

   ① 若Unicode码点在第一平面(BPM)中,则使用2个字节进行编码。

  ② 若Unicode码点在其他平面(辅助平面),则使用4个字节进行编码。

  关于辅助平面的码点编码更详细解析如下:辅助平面码点被编码为一对16比特(四个字节)长的码元, 称之为代理对(surrogate pair), 第一部分称为高位代理(high surrogate)或前导代理(lead surrogates),码位范围为:D800-DBFF. 第二部分称为低位代理(low surrogate)或后尾代理(trail surrogates), 码位范围为:DC00-DFFF。注意,高位代理的码位从D800到DBFF,而低位代理的码位从DC00到DFFF,总共恰好为D800-DFFF,这部分码点在第一平面内是保留的,不映射到任何字符,所以UTF-16编码巧妙的利用了这点来进行码点在辅助平面内的4字节编码。

  说明:字符'A'的Unicode码点为65(十进制),十六进制表示为41,在第一平面。根据规则,UTF-16采用2个字节进行编码。那么问题又来了,知道了采用两个字节编码,并且我们也知道计算机是以字节为单位进行存储,这两个字节应该表示为00 41(十六进制)?或者是41 00(十六进制)呢?这就引出了一个问题,需要用到之前提及的BOM机制来解决。

  表示为00 41意味着采用了大端序(Big endian),而表示为41 00意味着采用了小端序。那么计算机如何知道存储的字符信息采用了大端序还是小端虚呢?这就需要加入一些控制信息,具体是采用大端序,则在文件前加入FE FF,采用小端序,则在文件前加入FF FE。这样,当计算开始读取时发现前两个字节为FE FF,就表示之后的信息采用的是小端序,反之,则是大端序。

  字符(无法显示,只能截图显示),其Unicode码点为65902(十进制),十六进制为1016E,很显然,已经超出了第一平面(BMP)所能表示的范围。其在辅助平面内,根据规则,UTF-16采用4个字节进行编码。然而其编码不是简单扩展为4个字节(00 01 01 6E),而是采用如下规则进行计算。

  ① 使用Unicode码位减去100000(十六进制),得到的值扩展20位(因为Unicode最大为10 FF FF(十六进制),减去1 00 00(十六进制)后,得到的结果最大为0FFF FF(十六进制),即为20位,不足20位的,在高位加一个0,扩展至20位即可)。

  ② 将步骤一得到的20位,按照高十位和低十位进行分割。

  ③ 将步骤二的高十位扩展至2个字节,再加上D800(十六进制),得到高位代理或前导代理。取值范围是D800 - 0xDBFF。

  ④ 将步骤二的低十位扩展至2个字节,再加上DC00(十六进制),得到低位代理或后尾代理。取值范围是DC00 - 0xDFFF。

  Unicode转UTF-16规则流程图如下:

  

  按照这个规则,我们计算字符的UTF-16编码,我们知道其码点为1016E,减去10000得到016E,扩展至0016E,进行分割,得到高十位为00 0000 0000,十六进制为0000,加上D800为D800;得到低十位为01 0110 1110,十六进制为016E,加上DC00为DD6E;综合得到D8 00 DD 6E。即UTF-16编码为D8 00 DD 6E(也可为D8 0 DD 6E)。

  而对于UTF-32是使用4个字节表示,也采用BOM机制,可以类比UTF-16,这里不再额外介绍。

九、字符编码区别

  (1)UCS-2 与 UTF-16区别

     从上面的分析知道,UCS-2采用的两个字节进行编码。在0000到FFFF的码位范围内,它和UTF-16基本一致,为什么说基本一致,因为在UTF-16中从U+D800到U+DFFF的码位不对应于任何字符,而在使用UCS-2的时代,U+D800到U+DFFF内的值被占用。

    UCS-2只能表示BMP内的码点(只采用2个字节),而UTF-16可以表示辅助平面内的码点(采用4个字节)。

    我们可以抽象的认为UTF-16可看成是UCS-2的父集。在没有辅助平面字符(surrogate code points)前,UTF-16与UCS-2所指的意思基本一致。但当引入辅助平面字符后,想要表示辅助平面字符时,就只能用UTF-16编码了。

  (2)UCS -4与 UTF-16的区别

    在BMP上,UTF-16采用2个字节表示,而在辅助平面上,UTF-16采用的是4个字节表示。对于UCS-4,不管在哪个平面都采用的是四个字节表示。

  (3)为什么UTF-8编码不需要BOM机制

    因为在UTF-8编码中,其自身已经带了控制信息,如1110xxxx 10xxxxxx 10xxxxxx 10xxxxxx,其中1110就起到了控制作用,所以不需要额外的BOM机制。

参考链接:https://www.cnblogs.com/leesf456/p/5317574.html

优质内容筛选与推荐>>
1、多线程改变窗口标题
2、寻找未被投资的细分行业冠军(含统计表)
3、hdoj 2089 不要62
4、ThinkPHP 3.2.3 视图模型的使用
5、Mac软件


长按二维码向我转账

受苹果公司新规定影响,微信 iOS 版的赞赏功能被关闭,可通过二维码转账支持公众号。

    阅读
    好看
    已推荐到看一看
    你的朋友可以在“发现”-“看一看”看到你认为好看的文章。
    已取消,“好看”想法已同步删除
    已推荐到看一看 和朋友分享想法
    最多200字,当前共 发送

    已发送

    朋友将在看一看看到

    确定
    分享你的想法...
    取消

    分享想法到看一看

    确定
    最多200字,当前共

    发送中

    网络异常,请稍后重试

    微信扫一扫
    关注该公众号